Leverj Decentralized Custody

Bharath Rao, Nirmal Gupta
https://leverj.io
Version 0.1

Abstract—While centralized exchanges are very responsive, they are highly susceptible to custodial
risk. Fully decentralized exchanges (DEX) suffer from high latency and high cost, making them
impractical for high volume use. Using the on-chain order books and order matching introduce a
variety of performance and economic issues that make current DEX unusable. Leverj resolves the
trade-offs between centralized and decentralized options by decentralizing safety-critical functions
such as custody and centralizing the speed-critical functions such as order matching. Custodial
decentralization is done cheaply taking into account blockchain limitations such as congestion and
probabilistic finality.

I. INTRODUCTION

Bitcoin[1] was introduced as a peer-to-peer electronic cash system. Today there are
hundreds of blockchains with varying properties. A blockchain is a system whose rules
cannot be broken, which makes it an attractive proposition to all manner of financial
applications. This has led to numerous financial applications being rewritten to use the
blockchain to employ decentralized models to replace legacy financial systems. These
applications attempt to incorporate the blockchains elimination of the trusted third party
problem. However, attempts to use blockchains for high-speed applications have
produced low adoption. The primary use case for blockchain is trading, which is
impractical on high-latency systems due to the following issues:

A. Probabilistic Finality
Proof-of-work means that the longest chain cannot always be predicted and occasional
re-organization of the blockchain could cause a transaction’s confirmation in a single
block to be undone if a competing chain tip grows into a longer chain[2]. Six blocks of
confirmations are recommended in Bitcoin before the payment is deemed sufficiently
finalized. In practice, frequent smaller payments could do with fewer confirmations and
only fewer larger payments need to wait for higher number of confirmations. For the use
case of electronic cash payments, reorganization risk can be managed by waiting for
sufficient time until the risk of finality is dramatically reduced[3]. Faster block times
have more active chain tips[4], which means that there is insufficient certainty of an
order’s fill or cancelled status, eliminating effective arbitrage or hedging.

B. Latency and High-speed use cases
Requiring an operation to confirm on the blockchain introduces variable latency, which
makes creating any predictable system using it quite challenging. For example, user
feedback when placing an order or matching two orders and taking them off the book can
have long delays making the user experience cumbersome[5]. Trading is a high-speed
activity and the ability to cancel an order in milliseconds is essential for a healthy liquid
market. In a fast moving market, limit orders would need to chase the price and the user
is forced to offer an unreasonable price to get in. During high congestion, the market can
be manipulated by overloading the network and creating an arbitrage on the stale price in

the blockchain versus the more recent price on a centralized system.[6]
C. Economic pressure and low liquidity

Smart contracts not only produce information at block speed, they also consume
information at block speed. This means that any smart contract will always be acting on
stale data. The losses due to acting on stale information are cumulative and high volume
traders will always prefer to trade on more responsive systems. This results in an
economic pressure that drives volume out of DEX into centralized exchanges resulting in
nearly every DEX retaining only marginal volume.

II. RELATED WORK
Bitshares[7] created one of the earliest on-chain trading ecosystems with full on-chain
trading. All operations were on-chain including order placement, cancellation and
executions. Bitshares enjoyed moderate success in its day and continues to have marginal
traction as of this writing. However, even a three-second block time was insufficient for
widespread adoption. In addition to the issues described above, network effects prevent
trading of assets of larger networks such as Ethereum on specialized trading block chains.
With a better understanding of the problems of on-chain order books, newer trading
systems move order books off-chain and only retain execution on-chain. All on-chain
execution systems continue to be susceptible to manipulation and congestion attacks.

III. ON-CHAIN EXCHANGE ATTACKS
Trading requires low latency and deterministic finality. On-chain attacks simply take
advantage of high-latency and probabilistic finality. All attacks are economically viable
at present on most chains and could potentially drive an on-chain execution exchange to
unviability.

A. Congestion Attack
An attacker can create or amplify any network congestion cheaply by sending coins or
tokens among his own addresses for very low transaction fees/gas.[8] These transactions
are attack transactions and do not need to ever confirm; their only job is to clog the
network. Any on-chain exchange may simply have to stop all activity. Any market
making or other trading bots will simply not be economical due to high gas costs.

B. Front-running Attack
When an asset market moves fast in a centralized exchange, it may be economically
viable to pay higher gas price and get a fill on your order on the on-chain exchange. This
enables an attacker to steal someone else’s fill within a timespan of one block. Success

rate of this attack can also be amplified by congestion attack or miner collusion[6].
C. Stale Oracle Arbitrage Attack

Any smart contract that depends on an oracle for a price feed to settle trades will always
be trading on stale prices compared to the centralized exchanges due to block confirm
latency. This makes it viable to simply enter at the stale price on the smart contract and
exit at the fresher price on a centralized exchange[9]. This arbitrage attack will quickly

deplete reserves of such exchanges during big moves.
D. Cancel Flood Attack

Exchanges that charge gas to cancel orders are not attractive to market makers and are
unlikely to develop liquid markets. This is because approximately 98% of market
maker’s orders are cancelled[10]. This can somewhat be mitigated using expiration times
in lieu of cancel functions. However, expiration times do not have sufficient resolution
since they operate at the granularity of block confirm time. This means granularity at the
level of seconds is not viable, let alone milliseconds. The expiration feature as a
replacement for cancel is mostly ineffective since the need for rapid cancels is when the
price moves very fast and cancelling a large number of orders over and over is
uneconomical in terms of gas price and the latency makes reacting to the market and
moving orders impractical. On illiquid markets typical of DEX, an attacker can
manipulate the price up and down fast enough that all bots are forced to cancel and move
orders repeatedly.

IV. SPEED vs SAFETY
All the issues and attacks on on-chain exchanges arise from the modeling with the
assumption that a blockchain is a cheap resource with predictable and low variance
characteristics. If on the contrary, we choose to model the blockchain as an expensive
resource with high variance characteristics, it becomes clear how we should model a

3

decentralized solution. Until newer blockchains develop and have sufficient history of
deterministic rather than probabilistic finality and latencies comparable to ping round
trips, a practical approach is to decentralize safety-critical functions such as account
custody and centralize speed-critical functions such as order matching. We believe that
custody of user funds and user identity are safety-critical and choose to decentralize only
those aspects first.

V. NON-CUSTODIAL MODEL

There are two main kinds of attack on custodial models. The first is the /eist, where a
significant portion of the funds is taken at once[11]. The attacker does not expect to be
able to repeat the attack and would generally not care if the theft is detected immediately.
The second is skimming, where small amounts of funds are taken repeatedly over a longer
duration. The attacker generally would like to go undetected since repeating the attack as
many times as possible is key to a big payout. Our model aims to provably prevent heists
and prevent or detect most types of skimming using fraud-proofs.

A. Preventing Heists
For heists to be possible, the possibility for one person to control all coins in custody
must be possible. Segregated accounts that only enable the depositor to withdraw only
their own balance eliminate this possibility, since the attacker would now need the keys
of most users of the platform. Ensuring that the user’s keys are never sent across the
network is also a fundamental requirement for this to work. Therefore all authentication
must be using public/private keys only. Password or other shared secrets should never be

used.
B. Trading Settlements

Movement of assets between users as part of trade settlement requires that both users sign
the amounts and price they are ready to exchange. Although the exchange performs the
match, the custody contract transfers assets after verifying user signatures and integrity
of all changes. Executions need to meet specifications set by both users according to the

signatures from their private key for the smart contract to move assets among users.
C. Malicious User

Since the only avenue to extract assets is via a user account, a compromised exchange
would have to set up a malicious user and collaborate with it to move all assets into that
user by supplying data in a way to overcome the checks of the custody contract. Since all
executions need signatures from users and executions without assets backing them would
be rejected, the exchange would have to rearrange existing legitimate orders to favor the
malicious user. These can only occur in small pieces and are skimming attacks.

4

VI. DEFINITIONS

A. Asset
Any underlying instrument that is suitable for trading. Typically Ether or Ethereum
tokens.

B. Address
An ethereum address controlled by a private key in the user’s possession. This address
acts as the user identifier.

C. Segregated User Account
Segregated user accounts hold assets segregated by user. The key constraint is that assets

can only be deposited from or withdrawn to the address that represents its owner.
D. Verified Asset Swap

An atomic transfer of assets between two segregated user accounts after verification of

signatures and full compliance with transfer request parameters from both users.
E. Custodian

An Ethereum smart contract that manages segregated user accounts and performs verified
asset swaps.

F. Proof-of-violation
A cryptographic fraud-proof that the system has behaved in an unexpected manner,
typically leading to undeserved transfer of assets. These proofs can be submitted to the
custodian, which can address the situation appropriately. Not all instances are actual
fraud; some could result from programming errors such as rounding errors or extreme

conditions such as 51% attacks.
G. Exchange

An exchange is a centralized entity that maintains an order book and generates verified
asset swap requests, which it then submits to the custodian.

VII. PROTOCOL

We develop and prove the protocol using graph theory. In our model, entities that can
hold assets are nodes and all possible asset movements are directed edges. We limit the
edges that can exist on any node by defining a set of constraints that enumerate all
possible edges in the graph.

A. Segregation Constraint
A user is the only one who can only deposit into and withdraw assets from his account.
This constraint removes the ability of a compromised exchange to directly steal most or

all of the funds in the exchange. This requires the attacker to create a malicious user
account and move funds to it first.

N v
USER1 \A >
HOTWALLET COLDWALLET |[-sesmesen >
/ \‘\‘\ ‘“-A
A

USER2

Fig. 1 The standard hot/cold wallet structure

The standard hot/cold wallet system has no constraints on how funds come in and go out
and therefore is highly susceptible to heists.

Axiom 1: Segregated User Accounts are safe

DEPOSIT >
WITHORALY ACCOUNT1
USER1 ¢
DEPOSIT
P | ACCOUNT2
WITHDRAW
userz

Fig 2. Segregated wallets

Segregated wallets allow deposit/withdrawal only by owner and are safe from heists since
there is simply no path from the segregated wallet to anywhere else except their owner.

B. Solvency Constraint
Requests to transfer assets that exceed the user’s balance will be rejected. Solvency
constraint prevents a malicious exchange from creating orders without funds backing
them, preventing siphoning attacks.

C. Agency Constraint
Any movements of funds to a different party cannot occur without verification of
signature from the owner’s private key. Asset swaps between users require signed
instruction by both parties. To exchange 100 tokens for 1 ether, userl would have to sign
‘buy 100 tokens at limit price 1 ether’ and user2 would have to sign ‘buy 1 ether at limit
price 100 tokens’.

D. Integrity Constraint
The total number of assets remains the same after a transfer and sum up to the prior
amount. All transfers must satisfy the constraints (price and quantity) in the request.
The protocol constraints enumerated above ensure that all orders provably originate from
users with sufficient funds to cover their positions.

Axiom 2: Verified asset swaps are safe
Assets that are swapped using a smart contract are safe from heists as long as the smart

contract has no security defects.
SIGNED ORDER O1

v

DEPOSIT
- I > T T SMART CONTRACT:
- swap(01,02):
verifySign(01,02)
DEPOSIT > verifyParam(01,02)
< WITHDRAW ACCOUNT2 transfer(O1, O2)

USER2 ?

SIGNED ORDER 02

Fig 3. A smart contract swaps assets between segregated accounts

A smart contract can be used to safely swap assets between two segregated accounts. The
transfer between user accounts is gated by the smart contract logic, which verifies user
signatures on the order and that the order parameters such as price and quantity are a
match. Exchanges that swap ERC20 tokens on-chain are good examples of this
model[12]. As long as the custody and the settlement logic is on-chain, it’s infeasible to
steal coins from these accounts.

E. Delegated swaps using a centralized exchange
Instead of matching peer-to-peer, users can submit their orders to one or more matching

entities (exchanges), which can do the matching and submit fills to the smart contract.
F. Protocol detail

1. User deposits into segregated account on Custodian
a. User u, deposits asset t; into his segregated account A; from ethereum
address ¢,
b. Custodian updates user balance of t, for A,
2. Exchange updates balance of A, after N confirmations enabling trading of new
balance
User u, submits signed order p; with signature o;
Exchange validates order p, against signature o;
Exchange countersigns order p, with signature g,
Exchange updates order p, in orderbook
Exchange matches orders p, and p, to creates execution €,
Exchange periodically submits execution set € to custodian

A S A

Custodian processes execution set €
a. Custodian verifies user signatures ¢, and ¢, and execution parameters
(price, quantity, expiration, etc.) against orders p, and p, for each €, in €
b. Custodian settles asset balance between users u, and u, of matched orders
c. Custodian ensures integrity of all asset balances ensuring all assets add up
10. User y, initiates a withdraw request of n t, from his segregated Account A,
11. Custodian moves n t, to user’s Ethereum Address e
12. Fees if any are moved from Custodian to a staking contract. There is never any
assets flowing to Exchange

SIGNED ORDER 01

DEPOSIT
;(): > SMART CONTRACT:

WITHORAW ACCOUNT1 EXCHANGE
USER1 < swap(01,02):
verifySign(01,02) g | ORDER BOOK
DEPOSIT > verifyParam(01,02)
% ACCOUNT2 transfer(O1, 02) MATCHING
< WITHDRAW ENG'NE

USER2 ?

SIGNED ORDER 02

Fig 4. Off-chain matching and syncing to smart contract

Axiom 3: Delegated swaps are safe from heists

Protocol constraints prevent a compromised exchange from a large and swift heist and
would be forced to play within the rules of the custodian. This means the attacker is
likely to focus on the centralized component, the exchange. A compromised exchange
can only manipulate its inputs (signed orders) and its outputs (executions). Since the only
way to extract assets is as a user, an attacker would need to create conditions to give a
colluding user marginal advantages in every trade. This requires waiting for victim users
to place orders and then manipulate order books create fraudulent executions that look
legitimate to the smart contract. Done long enough and often enough, this could be
economically viable to perform. However, most of these attacks can be addressed using
fraud-proofs.

VIII. PROTOCOL SECURITY
The exchange cannot synthesize or alter orders with the signature of a legitimate user and
the protocol constraints prevent catastrophic theft. A compromised exchange however
may collude with and favor a malicious user using a variety of skim attacks. To favor a
colluding user, the exchange would need signed orders from victim users which would be
filled at an adverse price. Since the exchange cannot synthesize or alter orders, it may try
to manipulate legitimate orders to use them for victimization. Note that even a coarse
expiry time on the orders greatly reduces the impact and detection burden of the attack.
Note that this is not a comprehensive list of all possible attacks but a framework to
quickly address them by quickly adding fraud-proofs when a new defect is discovered.

9

A. Replay attack
A simple way to synthesize a victim order is to simply remember a past order and use it
when the price is adverse for the victim. The exchange simply duplicates an order and
fills it at a price favoring a colluding user. Custodian contract prevents replay attacks by

the tracking order ids of all matched orders and rejecting duplicates.
B. Cancelled order attack

A variant of the above is when the exchange simply fills an order that was cancelled.
Storing cancelled order ids in the smart contract is impractical, since cancels are
numerous and cancellation need to be fast. However, proof-of-cancellation can be used as
a fraud-proof that can be submitted to the Custodian. The custodian can verify that a
cancelled order has been filled and halt the exchange.

C. Price-time priority violation attack
Even non-cancelled orders can be used for attacks by simply withholding them from the
orderbook and waiting for an adverse price movement and matching with a colluding
user. Such violations can be detected by the user using price-time fraud proof: an

execution exists for an order with a better price but later timestamp than the victim order.
D. Non-acknowledgement attack

An exchange may refuse to accept legitimate orders from a user due to operational
policies such as rate limiting or network issues; these do not produce fraud-proofs. In
contrast, a non-acknowledgement attack occurs when the exchange takes a user’s signed
order and instead of replying with its own signature, saves the submitted order for
skimming. It then waits for the price to move and then matches it at an unfavorable price,
siphoning profit to a colluding user. If this happens, a user can detect immediately when
he sees one of his unacknowledged orders filled. The fraud proof for this is the same as
the price-time fraud-proof.

E. Suppressed Executions Attack
While executions cannot be synthesized or duplicated, they can certainly be suppressed,
enabling a compromised exchange to simply suppress losing trades of a colluding user
from being synced to the smart contract and withdrawing funds while the smart contract
is still in the stale state. This is a variant of TOCTOU attack[13]. Users who observe
withdrawals being processed while the Custodian is in a stale state can submit a fraud

proof preventing the attacker from withdrawing.
F. Mitigation of skim attacks

The exchange would need to sync executions to the smart contract containing a
fraudulent execution before the assets can be withdrawn. The syncing will cause anyone

10

monitoring the executions to detect the anomaly instantly and submit fraud-proofs as
described below, preventing the attacker from stealing funds.

Axiom 4: There are 5 possible skimming attacks

A compromised exchange can rearrange orders that flow into and executions that flow
out of the matching engine. There are four possible rearrangements: suppress, pass
faithfully, duplicate and reorder (i.e., pass after a delay)

There are two possible order operations: Cancel and create. Updates are simply cancel
and create.

Faithful passes are not attacks, so we have the following attack matrix:

Order Suppress Duplicate Reorder

Cancel Non-Acknowledgment No effect ~ Cancel Order Attack
Create Non-Acknowledgment Replay Price-time Priority
Execution Suppress Duplicate Reorder

Match Execution Suppression Prevented No effect

Table 1. Combinatorial attacks on leverj protocol

All these attacks are described above and have fraud-proofs that can be submitted to the
Custodian contract to disincentivize skimming attacks.

IX. SUBMISSION OF FRAUD-PROOFS
A malicious actor would need to withdraw their funds after a fraudulent action. As long
as there is a sufficient window of time to detect and submit fraud proofs, the smart
contract can prevent the withdrawal or disable further action on the Custodian. Other
users can detect the state change and withdraw their assets at their convenience. We
propose a waiting period for every user after a withdrawal request, sufficient enough for
any fraud proofs to be submitted. The exchange and smart contract would not accept any
transactions for a user until their withdrawal is processed. This slight inconvenience is a
justifiable tradeoff for the added safety. On the verification of a fraud proof, the exchange
would halt. The perpetrator’s balance could be awarded to the fraud-proof submitter,
making compliance a form of mining.

11

X. CONCLUSION
Centralizing speed-critical functions and decentralizing safety-critical functions enable us
to avoid on-chain exchange attacks vectors. The balance between high speed and
on-chain security can be accomplished to a degree that enables us to add significant value
today bringing the best of both worlds and provides an easy migration path to full
decentralization on high-speed chains of the future.

XI. FUTURE WORK

1. For simplicity, this paper focuses only on spot-trading using limit orders.
Adjustments for trading fees, margin trades and liquidations are out of scope.

2. In high-speed operational environment, coalescing executions in order to reduce
the state load may be beneficial.

3. An incentive structure for submitting fraud-proofs may encourage decentralized
monitoring and detection of exchange compromise. It may be as simple as
awarding exchange fees collected or the account balance of the malicious user.

4. Current version assumes the Custodian will expire at a point in time when all
assets are withdrawable by the user. This part could benefit from transparent UX.

REFERENCES

[1] https://bitcoin.org/bitcoin.pdf

[2] https://blog.ethereum.org/2016/05/09/on-settlement-finality/

[3] https://bitcoil.co.il/Doublespend.pdf

[4] https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/

[5] https://www.reddit.com/r/EtherDelta/comments/6wtbvu/etherdelta_performance 2017829/
[6] http://www.swende.se/blog/Frontrunning.html

[7] https://bitshares.org/

[8] https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
[9] http://hackingdistributed.com/2017/08/13/cost-of-decent/

[10] https://www.sec.gov/marketstructure/research/highlight-2013-01.html
[11] https://en.wikipedia.org/wiki/Bitfinex hack

[12] https://swap.tech/whitepaper/

[13] https://en.wikipedia.org/wiki/Time _of check to_time of use

12

https://swap.tech/whitepaper/
https://bitcoil.co.il/Doublespend.pdf
https://blog.ethereum.org/2016/05/09/on-settlement-finality/
http://www.swende.se/blog/Frontrunning.html
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://en.wikipedia.org/wiki/Bitfinex_hack
http://hackingdistributed.com/2017/08/13/cost-of-decent/
https://www.sec.gov/marketstructure/research/highlight-2013-01.html
https://bitshares.org/
https://www.reddit.com/r/EtherDelta/comments/6wtbvu/etherdelta_performance_2017829/
https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://bitcoin.org/bitcoin.pdf

APPENDIX—Solidity Code Samples

A. Segregated Accounts

function() payable {
ethers[msg.sender] = SafeMath.add(ethers[msg.sender],msg.value);

function depositToken(uint256 _value) returns (bool result){
tokenCount = SafeMath.add(tokenCount, value);
tokens[msg.sender] = SafeMath.add(tokens[msg.sender], value);
return token.transferFrom(msg.sender, this, _value);

function withdraw(address _user, uint256 _eth, uint256 _tokens)
onlyOwner notDisabled {
require(SafeMath.add(lastStateSyncBlocks[_user] ,
withdrawBlocks) <= block.number);
send(_user, _eth, _tokens);

B. Cancelled order Replay fraud-proof disables smart contract

function notifyReplay(uint[] orderUINT, bool isBuy, address user,
uint8 v, bytes32 r, bytes32 s){
Order memory order = Order(orderUINT[@], orderUINT[1], orderUINT[2],
orderUINT[3], orderUINT[4], isBuy, user);
require(isVerified(order, owner, v, r, s));
require(SafeMath.sub(order.qty, order.cancelled) < filled[order.uuid]);
disabled = true;

C. Users can recover balance from disabled contract

modifier isDisabled{
require(disabled);

p—

function recoverFunds() isDisabled {
send(msg.sender, ethers[msg.sender], tokens[msg.sender]);

13

